Thermochemistry

- 1. I 0.315 moles of hexane (C₆H₁₄) burn in a bomb calorimeter containing 5.65 liters of water, what's the molar heat of combustion of hexane (the water temperature rises 55.4 ⁰C)? The heat capacity of water is 4.184 J/g⁰C.
 - a) 4150 kJ/mol
 - b) 1310 kJ/mol
 - c) 4150 J/mol
 - d) 1310 J/mol
- 2. If I burn 22.0 grams of propane (C₃H₈) in a bomb calorimeter containing 3.25 liters of water, what's the molar heat of combustion of propane if the water temperature rises 88.5 °C?
 - a) $1.20 \times 10^3 \text{ kJ}$
 - b) $2.40 \times 10^3 \text{ kJ/mol.}$
 - c) $1.20 \times 10^3 \text{ J}$
 - d) $2.40 \times 10^3 \text{ J/mol.}$
- 3. What units of energy are commonly used in chemistry?
 - a) Joules
 - b) Liters
 - c) Kilogram
 - d) Calories
- 4. What is the units for specific heat?
 - a) J
 - b) g /°C
 - c) $J/g \cdot C$
 - d) J / °C
- 5. What is the units for heat capacity?
 - a) J
 - b) g /°C
 - c) J/g.°C
 - d) J / °C

6. A piece of silver of mass 362 g has a heat capacity of 85.7 J.°C ⁻¹ . What is the specific
heat of silver?
a) 0.237 J / °C
b) 237 J / °C
c) 23 J / °C
d) 47 J / °C
7. Calculate the amount of heat liberated (in kJ) from 366 g of mercury (specific heat of
mercury 0.139 J/g .°C) when it cools from 77.0 to 12.0 °C.
a) 33.1 kJ
b) -3.31 kJ

8. A 6.22 kg piece of copper metal (specific heat of copper 0.385 J/g . $^{\circ}$ C) is heated from 20.5 $^{\circ}$ C to 324.3 $^{\circ}$ C. Calculate the heat absorbed (in kJ) by the metal.

```
a) 728 J
```

c) 3.31 Jd) 1000 J

- b) 728 kJ
- c) 72J
- d) 27kJ

9. A sheet of gold weighing 10.0 g and at a temperature of 18.0 °C is placed flat on a sheet of iron weighing 20.0 g and at a temperature of 55.6 °C. What is the final temperature of the combined metals? Assume that no heat is lost to the surroundings. (Hint: The heat gained by the gold must be equal to the heat lost by the iron.)

```
a) 32.7 °C
```

- b) 50.7 °C
- c) 60.5 °C
- d) 100 °C

10. SI unit of work is

- a) Atmosphere
- b) Joule
- c) Calories
- d) Second

11.A chemical reaction that absorbs heat from the surroundings is said to be
and has a ΔH at constant pressure
a) endothermic, positive
b) endothermic, negative
c) exothermic, negative
d) exothermic, positive
12. Which one of the following statements is true?
a) Enthalpy is an intensive property.
b) The enthalpy is not a state function
c) Enthalpy is a state function.
d) H is the value of q measured under conditions of constant volume.
13. Δ H for an endothermic process is while Δ H for an exothermic process is
a) zero, positive
b) zero, negative
c) positive, negative
d) negative, positive
14.Of the following, which one is a state function?
a) H
b) q
c) w
d) All of the above
a) In or the above
15. When a system ΔE is always negative.
a) absorbs heat and does work
b) gives off heat and does work
c) absorbs heat and has work done on it
d) none of the above is always negative
16. Consider the following standard heats of formation:
$P_4O_{10}(s) = -3110 \text{ kJ/mol}$, $H_2O(l) = -286 \text{ kJ/mol}$, $H_3PO_4(s) = -1279 \text{ kJ/mol}$
Calculate the change in enthalpy for the following process:
$P_4O_{10}(s) + 6H_2O(l) \rightarrow 4H_3PO_4(s)$
a) 290 kJ
b) 2117 kJ
c) 1720 kJ
d) 0 kJ

- 17. 1. A gas absorbs 0.0 J of heat and then performs 15.2 J of work. The change in internal energy of the gas is
 - a) -24.8 J
 - b) -55.2 J
 - c) 55.2 J
 - d) -15.2 J
 - 18 . Calculate the work for the expansion of CO_2 from 1.0 to 2.5 liters against a pressure of 1.0 atm at constant temperature.
 - a) 1.5 liter · atm
 - b) 2.5 liter · atm
 - c) -1.5 liter · atm
 - d) -2.5 liter · atm
 - 19 One mole of an ideal gas is expanded from a volume of 1.00 liter to a volume of 10.00 liters against a constant external pressure of 1.00 atm. How much work (in joules) is <u>performed on the surroundings</u>? (T = 300 K; 1 L atm = 101.3 J)
 - a) 456 J
 - b) 912 J
 - c) 2740 J
 - d) 2870 J
 - 20 A 25.0 g piece of aluminum (which has a molar heat capacity of **24.03J**/°**C** mol) is heated to 82.4°C and dropped into a calorimeter containing water (specific heat capacity of water is **4.18J/g**°**C**) initially at 22.3°C. The final temperature of the water is 24.9°C. Calculate the mass of water in the calorimeter.
 - a) 187 g
 - b) 6.57 g
 - c) 3180 g
 - d) 2120 g
 - 21 A 40.2 g sample of a metal is heated to 99.3°C and then placed in a calorimeter containing 120.0 g of water (s = 4.18J/g°C) at 21.8°C. The final temperature of the water is 24.5°C. Which metal was used?
 - a) Aluminum ($s = 0.89J/g^{\circ}C$)
 - b) Iron (s = $0.45 J/g^{\circ}C$)
 - c) Copper ($s = 0.20 J/g^{\circ}C$)
 - d) Lead ($s = 0.14J/g^{\circ}C$)

22 Consider the following data:

$$\begin{array}{ll} \text{Ca(s)} + 2\text{C (graphite)} \rightarrow \text{CaC}_2(\text{s}) & \Delta \text{H (kJ)} = -62.8 \\ \text{Ca(s)} + \frac{1}{2} \text{O}_2(\text{g}) \rightarrow \text{CaO(s)} & \Delta \text{H (kJ)} = -635.5 \\ \text{CaO(s)} + \text{H}_2\text{O(l)} \rightarrow \text{Ca(OH)}_2(\text{aq}) & \Delta \text{H (kJ)} = -653.1 \\ \text{C}_2\text{H}_2(\text{g}) + \frac{5}{2} \text{O}_2(\text{g}) \rightarrow 2\text{CO}_2 + \text{H}_2\text{O(l)} & \Delta \text{H (kJ)} = -1300 \\ \text{C(graphite)} + \text{O}_2(\text{g}) \rightarrow \text{CO}_2(\text{g}) & \Delta \text{H (kJ)} = -393.51 \\ \end{array}$$

Use Hess's law to find the change in enthalpy at 25° C for the following equation:

$$CaC_2(s) + 2H_2O(1) \rightarrow Ca(OH)_2(aq) + C_2H_2(g)$$

- a) -713 kJ
- b) 713 kJ
- c) -318.8 kJ
- d) -3045 kJ